ПРАВИЛЬНЫЕ МНОГОГРАННИКИ

Икосаэдр

 
    Икосаэдр (от греческого ico —  шесть и hedra — грань) правильный выпуклый многогранник, составленный из 20 правильных треугольников. Каждая из 12 вершин икосаэдра является вершиной 5 равносторонних треугольников, поэтому сумма углов при вершине равна 300. Если принять длину ребра за а, то получим следующие формулы:

Сумма ребер

Площадь поверхности

Объем

Радиус описанной сферы

Радиус вписанной сферы

 Элементы симметрии додекаэдра

       Правильный икосаэдр имеет 15 осей симметрии, каждая из  которых  проходит через  середины противоположных параллельных  ребер.  Точка пересечения всех осей симметрии икосаэдра является его центром симметрии.

Плоскостей симметрии также 15. Плоскости симметрии проходят через четыре вершины, лежащие в одной плоскости,  и середины противолежащих параллельных  ребер.

 
НАЦИОНАЛЬНЫЙ ФОНД ПОДГОТОВКИ КАДРОВ. ИНФОРМАТИЗАЦИЯ СИСТЕМЫ ОБРАЗОВАНИЯ.
Сайт сделан по технологии "Конструктор школьных сайтов".